1. How do you find the surface area : volume ratio? What does the surface area represent in a cell? What does the volume represent in a cell?

Date

- 2. What happens to the surface area : volume ratio of a cell as it grows? Why?
- 3. What would likely happen to a huge cell? Why?
- 4. What are some ways cells increase their surface area so they can grow larger?
- 5. In summary, why don't we get large unicellular organisms, like unicellular whales?

Ted Ed: What is the biggest single-celled organism? Name ______Date _____Date _____

- 1. How do you find the surface area : volume ratio? What does the surface area represent in a cell? What does the volume represent in a cell?
- 2. What happens to the surface area : volume ratio of a cell as it grows? Why?
- 3. What would likely happen to a huge cell? Why?
- 4. What are some ways cells increase their surface area so they can grow larger?
- 5. In summary, why don't we get large unicellular organisms, like unicellular whales?

Surface Area : Volume Simulation N	lame	Date
------------------------------------	------	------

Question: How do surface area, volume, and the area:volume ratio change as a cell gets bigger? Use the Surface Area / Volume Simulation to complete the chart below by testing a wide range of radii:

Radius (µm)	Surface area (µm ²)	Volume (µm ³)	Area/Volume Ratio (µm ⁻¹)

1. What happens to the surface area as the cell gets bigger? _____

- What happens to the volume as the cell gets bigger? ______
- 3. Which value surface area or volume grows more quickly as the radius gets closer to 6.5 μ m?
- 4. What happens to the area/volume ratio as the cell gets bigger? _____
- 5. What type of cell do you think would be more efficient a large cell, or a small cell? Explain your answer.

Surface Area : Volume Simulation	Name	Block	Date	
Question: How do surface area, volume, and the area:volume ratio change as a cell gets bigger?				

Use the Surface Area / Volume Simulation to complete the chart below by testing a wide range of radii:

Radius (µm)	Surface area (µm²)	Volume (µm³)	Area/Volume Ratio (µm ⁻¹)

1. What happens to the surface area as the cell gets bigger?

What happens to the volume as the cell gets bigger? _____

3. Which value – surface area or volume – grows more quickly as the side gets closer to 10 $\mu m?$

4. What happens to the area/volume ratio as the cell gets bigger? _____

5. What type of cell do you think would be more efficient – a large cell, or a small cell? Explain your answer.