Explore Explor

Name: ____

Date: ___

Student Exploration: Photosynthesis Lab

Prior Knowledge Questions (Do these BEFORE using the Gizmo.) What is the purpose of this activity? What are you supposed to be learning from it?

Gizmo Warm-up

During **photosynthesis**, plants use the energy of light to produce **glucose** ($C_6H_{12}O_6$) from **carbon dioxide** (CO_2), and water (H_2O). Glucose is a sugar that plants use for food and as a building block for cellulose and starch.

A waste product of photosynthesis is **oxygen**. Plants use some of the oxygen they produce, but most of it is released. In the *Photosynthesis Lab* Gizmo[™], you can monitor the rate of photosynthesis by measuring oxygen production.

- 1. Observe the left pane closely. What do you think the bubbles are? _
- 2. Change different factors such as light or CO₂ levels and observe what happens to the oxygen production. If oxygen production increases, what does this mean for the rate of photosynthesis?

Activity A:	Get the Gizmo ready:				
Optimal conditions	 Be sure that the BAR CHART tab is selected. Turn on Show numerical values. 	Light intensity (%)	7(°C)	CO ₂ level (ppm)	O ₂ flow (mL/h)

Question: In the Gizmo, what are the ideal conditions for photosynthesis?

 Form hypothesis: During photosynthesis, light energy is used to synthesize carbon dioxide (CO₂) and water (H₂O) into glucose (C₆H₁₂O₆) and oxygen (O₂). The complex series of chemical reactions is summarized by the following formula:

$$6CO_2 + 6H_2O + \text{light energy} \rightarrow C_6H_{12}O_6 + 6O_2$$

In the Gizmo, what you are able to change the **temperature**, **light intensity**, **CO**₂ **level**, **and color of light**. Choose **one** factor you wish to study, and write a scientific question about the effect of this factor on the rate of photosynthesis.

Write a hypothesis on what level of that factor would be **optimal** for photosynthesis.

2. Plan: Design an experiment and use the Gizmo to test your hypothesis for the optimal

conditions for photosynthesis.

- A. Independent variable
- B. Dependent variable
- C. Constants (3)
- D. Control group
- 3. <u>Experiment</u>: Run your experiment and complete the data table shown below:

Temperature	Light intensity	CO ₂ level	Light wavelength ("W" if white)	Oxygen production

3. <u>Analyze:</u> Choose the appropriate graph below and plot your data. Leave the other graphs blank for now.

*For the CO₂ level from white light, draw a dotted horizontal line across the graph

- 4. <u>Share</u>: Find groups that performed experiments on the other three variables and plot their data on the other graphs above.
- 5. <u>Conclude:</u> Write a conclusion that describes the optimal conditions for photosynthesis for the variable you tested (not all variables).

Claim (What is the answer to your original Photosynthesis works best at	I scientific question?)
Evidence (<i>Describe</i> what your data looks like.) Oxygen production was highest at	Reasoning (<i>Explain</i> what your data <i>means</i> .) The evidence (data) supports my claim because

*If you wish, you may write your conclusion on the back of this sheet without the CER framework, but be sure to include all parts of the conclusion.