Names		E	Block Date			
		"Liquid X" Lab				
Station 1 – "The Penny Lab" Water is cohesive, adhesive, and has surface tension. Does Liquid X have the same properties?						
 Count the numb Dry your penny 	between each trial.	able to "pile up" on t	o a dry penny. op of the penny befo ne average or mean			
Data						
Sample	Number Trial 1	er of Drops Before S Trial 2	Spilling Trial 3	Mean		
NA .	I IIai I	THAI Z	That 3			
Water						
Liquid X						
	nt variablestants					
Claim – Does "Liquid >	K" display cohesion,	adhesion, and surfa	ce tension like wate	r?		
Evidence – What data	supports your claim	· · · · · · · · · · · · · · · · · · ·	g – Explain how you te properties of cohe e tension.			

Station 2 – Bubble and Fizz

Water is a **universal solvent** and makes chemical reactions possible as a result. Does Liquid X have this same property?

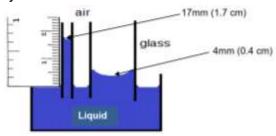
1.	IVIIX SITIAI	scoops of sodium bicarbonate (ba	king soda) and citric acid in the same plastic cup.			
	•	What happens?				
2.	2. Pour a small amount of water into the plastic cup.					
	•	What happens?				
3.	Repeat s	teps 1 and 2 in a new plastic cup, b	out use "Liquid X" instead of water.			
	•	What happens?				
•	In this ex	periment, identify the:				
	•	Independent variable				
	•	Dependent variable				
	•	Two constants	· · · · · · · · · · · · · · · · · · ·			
•	Write a c	onclusion.				
Ciaiiii	i – is Liqu	id X" a universal solvent?				
Evide claim?		at observations support your	Reasoning – Explain how your observations demonstrate properties of universal solvency.			

Station 3 – Frozen Density

The solid form of water (ice) is less dense than liquid, causing it to float (**buoyancy**) and protect aquatic life underwater. Does Liquid X have this same property?

Observations (What happened?

- 1. Remove a solid block of water from the beaker using tongs.
- 2. Drop the block into a beaker of liquid water. Observe how it behaves.
- 3. Repeat steps 1 and 2 using frozen and non-frozen "Liquid X."
- 4. Leave the "ice" in the liquid to melt.


Substance

Solid water (ice) in liquid water						
Solid "Liquid X" in liquid "Liquid X"						
 In this experiment, identify the: Independent variable 						
Two constants						
Write a conclusion.						
Claim – Does the solid form of "Liquid X" have but	yancy?					
Evidence – What observations support your claim?	Reasoning – Explain how your observations demonstrate properties of buoyancy.					

Station 4 – Overcoming Gravity

Water can literally "climb" up thin tubes due to its cohesive and adhesive properties, thus demonstrating **capillary action**. Does Liquid X have the same property?

- 1. Use a ruler to measure how high water and Liquid X has climbed in each glass capillary tube.
 - Use the metric (centimeter) side. Measure each height in millimeters (mm). Count the smallest lines. Don't just read the number on the ruler!

Tube Inner-Diameter	Height of water inside tube (above liquid in tray) (mm)	Height of "Liquid X" inside tube (above liquid in try) (mm)
5.0 mm		
3.0 mm		
0.5 mm		

- In this experiment, identify the:
 - Independent variable _______

 - Two constants _______,
- Write a conclusion.

Claim – Does "Liquid X" o	demonstrate capillary	action?
---------------------------	-----------------------	---------

Evidence – What observations support your claim?

Reasoning – Explain how your observations demonstrate properties of buoyancy.

Station 5 - Hot Plate Race

Water has a **high heat capacity**, which means it doesn't change temperature as much as other substances. Does Liquid X also have this property?

- 1. Record the initial temperature of the sand, water, and Liquid X.
- 2. Leave the temperature probes in the three beakers.
- 3. Place the three beakers on the hot plates (sand on left; water and Liquid X on right). Turn on each hot plate to a setting of "2" and press "play" in the lower left-hand corner of the LabQuest2 display.
- 4. Wait for the data to generate and record your data below.
- 5. Turn off the hot plates when data is finished.
- 6. Discard the hot sand, hot water, and hot "Liquid X" in the "waste" containers and set up the experiment for the next group:
 - 100 mL of fresh sand, Liquid X, and water in the same beakers.
 - Reinsert temperature probes in each substance.

Data

Sample			Ten	nperature (°C	C)		
Sample	Initial (0 min)	1 min	2 min	3 min	4 min	5 min	Range
Sand							
Water							
Liquid X							

In this	nis experiment, identify the:	
•	Independent variable	
•	Dependent variable	
•	• Two constants,	

Write a conclusion.

Claim – Does "Liquid X" demonstrate high heat capacity?				
Evidence – What observations support your claim?	Reasoning – Explain how your observations demonstrate properties of high heat capacity.			

Station 6 – pH Gizmo

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

	Metavial in the tube ull value Asidia Designar poutral?						
	0-14 pH indicator paper						
	se the Gizmo to find the pH of each of the available substances. Classify each substance as acidic (pH sic (ph > 7), or neutral (pH = 7).						
	3. Is ammonia acidic or basic?						
2. Com	pare the paper to the pH color chart . What is the pH of ammonia?						
1. Indi	cators change color in acids or bases. What is the color of the pH paper?						
•	Analysis Gizmo™ allows you to find the pH of a variety of liquids. In the Gizmo, check that the nce in the tube is Ammonia, and click Test. Wait until the animation is finished.						
The stre substan	Warm-up Ength of an acid or base is measured on the pH scale.The pH scale runs from 0 to 14. Acidic ces have a pH below 7. Basic (alkaline) substances have a pH above 7. Pure water has a pH of 7 and dered neutral .	t					
[3. What does it feel like if soap gets in your eye?						
,	A. What does soap feel like?						
	es are substances that produce hydroxide ions (OH ⁻) when dissolved in water. Hand soap is an nple of a base.						
E	3. What does it feel like if lemon juice gets in your eye?						
,	A. What does lemon juice taste like?						
	Is are substances that produce hydrogen ions (H ⁺) when dissolved in water. Lemon juice is an nple of an acid.						

0-14 pH indicator paper							
Material in the tube pH value Acidic, Basic, or neutral?							
Bleach							
Hand soap							
Juice (lemon)							
Milk							
Saliva (human)							
Stomach acid							
Vinegar							
Water (distilled)							

Station 7 – Acids and Bases

Water has a **neutral** pH of exactly **7**. How does the pH of Liquid X compare to this and the pH measurements of other common chemicals?

- 1. Remove the pH probe from the white bottle. Rinse with water from the squeeze bottle while holding it over a waste container. Gently blot dry with towel.
- 2. Insert the probe into the first sample. Wait for the LabQuest2 to stabilize. Record the pH.
- 3. Remove the probe, rinse with water again, and blot dry again.
- 4. Repeat for each solution, rinsing and drying between each.
- 5. Rinse and dry one more time before replacing the probe in the white bottle.

Sample	Liquid X	Water	Ammonia	Lemon	Vinegar	Bleach	Milk
pH Meter Measurement							

•	In this experiment, identify the:	
	Independent variable	
	Dependent variable	
	Two constants	_
•	Write a conclusion.	

Evidence – What observations support your claim?

Reasoning – Explain how your observations demonstrate the neutrality of "Liquid X."