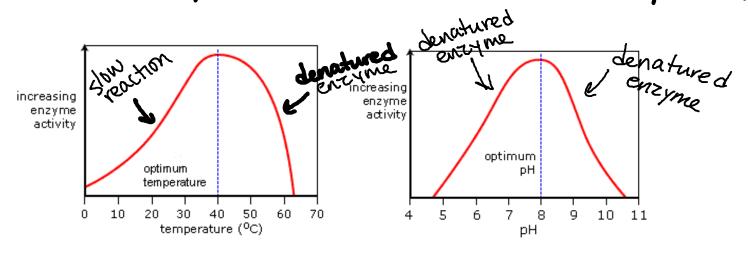
Enzyme Notes

Pa	qe	

Chemical Reactions

Chemical Reactions	
Metabolism - any chemical of	eaction in a living organism
• Example 1 - digestion of	f food (breaking down molecules)
• Example 2 - bulding muscle	e (putting together molecules)
Reaction Rate (Metabolic Rate)	d of the reaction
For organisms to survive, grow, and maintain	h homeostasis, their reaction rates must be
Enzymes	
Enzymes - proteins that ac	t as biological catalysts
Catalysts - Speed up chemic	al rxns
Adding an enzyme to a metabolic reaction	the reaction rate.
Adding an enzyme will	the amount of product made.
Adding an enzyme will	the time needed for a metabolic reaction to occur.
Enzyme Structure	Problem Problem
•	, made of amino acids monomers.
Every enzyme has a different shape because	its made of different
sequences/chains of	f amino acids
Active site - part of enzyme	that binds to/grabs substrate
The shape of an enzyme's active site must m	natch shape of substrate
An Enzyme can only catalyze a specific type	of metabolic reaction. An enzyme cannot catalyze many
types of reactions because	site is specific to a
Certain type of sub	strate
▼ *	

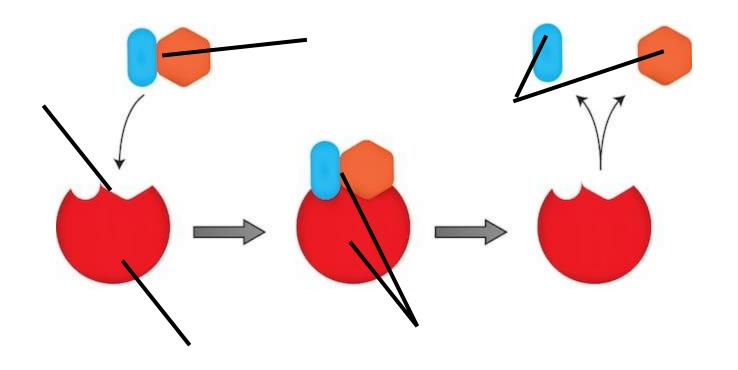

Temperature and pH

2 Factors that affect the shape of an enzyme - temperature & pH (acidity)

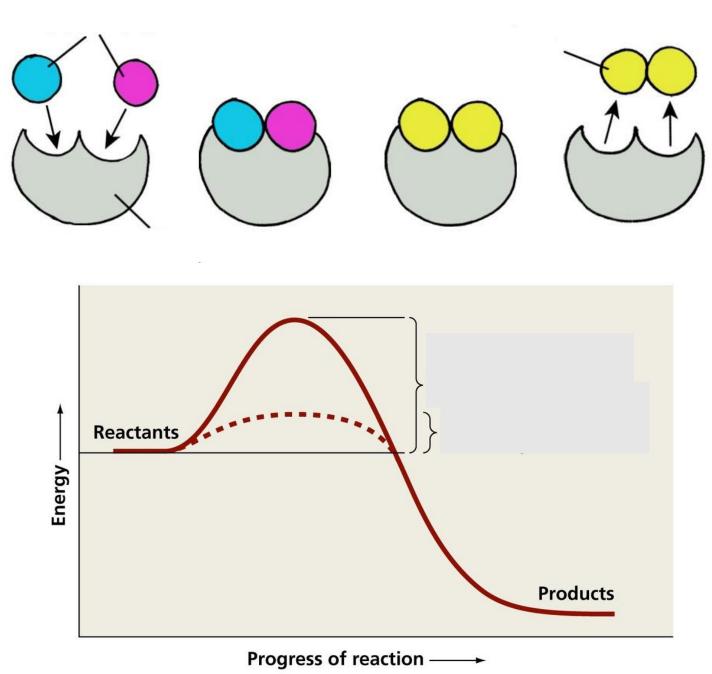
Denature - Change & destroy an enzymes shape (active site)

Changing an enzyme's shape will cause it to stop working because ______ the _active Site_____

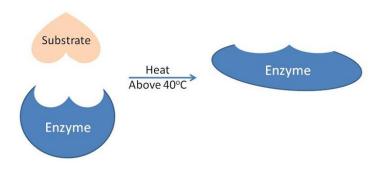
can't fit w/ the substrate - doesn't catalyze rxn



Based on the graphs above, what are the optimum (optimal; best) conditions for this enzyme?


optimum temp = optimum pH =

Label the diagram below with the following terms:


	Active site	Enzyme	Enzyme-Substrate Complex	Products	Substrate

A ativo aita	F 10 =1 / 100 0	English of Cultipatrata Campalay	Draduat	Cubatratas
Active site	⊨nzvme	Enzyme-Substrate Complex	Product	Substrates

Key Term

