Polygenic traits

- Traits that are controlled by multiple genes
- Often show a wide variety of phenotypes
- Examples:
 - Human skin color
 - Height
 - Weight

Gametes		ABC							
F2 generation	ABC	6	5	5	4	5	4	4	3
	ABC	5	4	4	3	4	3	3	2
АbС Abc aBC aBC abC abC abC		5	4	4	3	4	3	3	2
		4	3	3	2	3	2	2	1
		5	4	4	3	4	3	3	2
		4	3	3	2	3	2	2	1
		4	3	3	2	3	2	2	1
		3	2	2	I.	2	I.	I	0

Sex-linked traits

- Genes located on the sex chromosomes (X and Y)
- Remember: <u>males = XY</u> <u>females = XX</u>
- Rules for how these genes are passed on:
 - Daughters
 - <u>always</u> receive **dad's** single X chromosome
 - <u>randomly</u> receive <u>one</u> of **mom's** X chromosomes
 - o Sons
 - <u>always</u> receive **dad's** Y chromosome
 - <u>randomly</u> receive <u>one</u> of **mom's** X chromosomes
- Examples:
 - Red-green color blindness
 - Hemophilia
 - Male-pattern baldness

Traits with multiple alleles

- A person can only carry **two alleles** for a gene, but some genetic traits have more than two possible alleles
- Example 1: Eye color has many different alleles (blue, green, hazel, brown, etc.)
- <u>Example 2</u>: Human blood types: <u>3 alleles</u> (ABO) determine blood type. These produce <u>four</u> <u>possible phenotypes</u> (A, B, AB, & O)

Offspring Phenotypes: 1/4 Type A, 1/4 Type B, 1/4 Type AB, 1/4 Type O

Incomplete dominance

- Not all traits follow the "dominant covers up recessive" pattern
- Incomplete dominance is where the dominant allele and recessive allele combined (in heterozygotes) to create a blended phenotype
- <u>Example</u>: In some flowers, the heterozygous (1 red, 1 white allele) genotype creates pink flower color.

Codominance

- Similar to incomplete dominance
- The dominant and recessive alleles are expressed at the same time (NOT BLENDED, usually appears as spots or stripes on an organism)

